Inhibition of the cardiac L-type calcium channel current by antidepressant drugs.
نویسندگان
چکیده
Antidepressants inhibit many membrane receptors and ionic channels, including the L-type calcium channel. Here, we investigated the inhibition of calcium current (I(Ca)) by antidepressants in enzymatically isolated rat ventricular myocytes using whole-cell patch clamp. The molecular mechanism of inhibition was studied by comparing the voltage and state dependence of antidepressant inhibition of I(Ca) to the respective properties of calcium antagonists, and by studying the effect of (+/-)-1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-[trifluoromethyl]phenyl)-3-pyridine carboxylic acid methyl ester (Bay K8644) or diltiazem on the inhibitory potency of the antidepressants. All selected antidepressants inhibited calcium currents reversibly and concentration-dependently. At a stimulation frequency of 0.33 Hz, the antidepressants imipramine, clomipramine, desipramine, amitriptyline, maprotiline, citalopram, and dibenzepin blocked I(Ca), with IC(50) values of 8.3, 11.6, 11.7, 23.2, 31.0, 64.5, and 364 muM. The antidepressant drugs shifted steady-state inactivation curves of I(Ca) to negative voltages. The extent of the shift was similar to that induced by diltiazem or verapamil, but it was significantly smaller than that induced by felodipine. The use-dependent component of the antidepressant-induced block was similar to that of diltiazem, and it was significantly more and less, respectively, than those of felodipine and verapamil. In the presence of Bay K8644, antidepressants were more effective in inhibiting I(Ca). However, the inhibitory effect of antidepressants was also augmented by diltiazem, suggesting that these drugs do not compete with diltiazem for a single binding site. These data suggest that antidepressants exert their inhibitory action on cardiac L-type calcium channels by a specific interaction at a receptor site similar to, but distinct from, the benzothiazepine site.
منابع مشابه
Effects of L-type Calcium Channel Antagonists Verapamil and Diltiazem on fKv1.4ΔN Currents in Xenopus oocytes
The goal of this study was to determine the effects of the L-type calcium channel blockers verapamil and diltiazem on the currents of voltage-gated potassium channel (fKv1.4ΔN), an N-terminal-deleted mutant of the ferret Kv1.4 potassium channel. Measurements were made using a two electrode voltage clamp technique with channels expressed stably in Xenopus oocytes. The fKv1.4ΔN currents displayed...
متن کاملEffects of L-type Calcium Channel Antagonists Verapamil and Diltiazem on fKv1.4ΔN Currents in Xenopus oocytes
The goal of this study was to determine the effects of the L-type calcium channel blockers verapamil and diltiazem on the currents of voltage-gated potassium channel (fKv1.4ΔN), an N-terminal-deleted mutant of the ferret Kv1.4 potassium channel. Measurements were made using a two electrode voltage clamp technique with channels expressed stably in Xenopus oocytes. The fKv1.4ΔN currents displayed...
متن کاملHaloperidol moderately inhibits cardiovascular L-type calcium current.
Effects of haloperidol on L-type CaV1.2 channel were studied. Calcium current was measured in whole cell patch-clamp using calcium as a charge carrier. Inhibition by haloperidol was investigated in CaV1.2 channel natively expressed in rat cardiac myocytes and recombinant cardiac (CaV1.2a) and vascular (CaV1.2b) splice variants of the channel expressed in HEK 293 cells. Haloperidol inhibited L-t...
متن کاملModification of Nifedipine Inhibitory Effect on Calcium Spike and L-Type Calcium Current by Ethanol in F1 Neuron of Helix aspersa
There is strong evidence demonstrating that nifedipine dissolved in ethanol selectively inhibits only L-type Ca2+ current. In addition, acute ethanol exposure reduces voltage-dependent calcium currents. In the present study, we investigated the antagonistic effect of fixed concentration of nifedipine dissolved in different concentration of ethanol on L-type Ca2+ current. In a Na+-K+ free soluti...
متن کاملSynthesis and Effects of Novel Dihydropyridines as Dual Calcium Channel Blocker and Angiotensin Antagonist on Isolated Rat Aorta
Objective(s) Four novel losartan analogues 5a-d were synthesized by connecting a dihydropyridine nucleus to imidazole ring. The effects of 5a and 5b on angiotensin receptors (AT') and L-type calcium channels were investigated on isolated rat aorta. Materials and Methods Aortic rings were pre-contracted with 1 pM Angiotensin II or 80 mM KCl and relaxant effects of losartan, nifedipine, 5a and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of pharmacology and experimental therapeutics
دوره 324 3 شماره
صفحات -
تاریخ انتشار 2008